Deformation and texture development in CaIrO3 post-perovskite phase up to 6 GPa and 1300 K

نویسندگان

  • Lowell Miyagi
  • Norimasa Nishiyama
  • Yanbin Wang
  • Atsushi Kubo
  • Don V. West
  • Robert J. Cava
  • Thomas S. Duffy
  • Hans-Rudolf Wenk
چکیده

At near ambient conditions, CaIrO3 is isostructural with the high-pressure polymorph MgSiO3 “post-perovskite” (pPv). MgSiO3 pPv is thought to be a major phase in the earth's lowermost mantle. CaIrO3 can thus serve as an analog for studying deformation of the pPv phase under conditions achievable with a multi-anvil deformation apparatus. Here we study the rheologic behavior of CaIrO3 pPv at a variety of pressure and temperature conditions from 2 GPa to 6 GPa and 300 K to 1300 K and various strain rates. Sintered, polycrystalline CaIrO3 pPv, cylindrical in shape, was deformed in the D-DIA multi-anvil press in several shortening cycles up to 20% axial strain at each temperature and pressure. Shortening cycles were followed by lengthening back to 0% strain. Quantitative texture information was obtained using in-situ synchrotron X-ray diffraction and the Rietveld method to analyze images. In all cases we find that (010) lattice planes align perpendicular to the compression direction upon shortening, and that there is little change in texture with temperature or pressure. This texture pattern is consistent with slip on (010) [100]. The texture observed here is different from that produced in room temperature diamond anvil cell (DAC) experiments on MgGeO3 and MgSiO3 pPv which both display textures of (100) and {110} lattice planes at high angles to the compression direction. This implies that CaIrO3 pPv may not be a good analog for the plastic behavior of MgSiO3 pPv. © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition

In situ observations of the perovskite–CaIrO3 phase transition in MgSiO3 and in pyrolitic compositions were carried out using a laser-heated diamond anvil cell interfaced with a synchrotron radiation source. For pure MgSiO3, the phase boundary between the orthorhombic Mg-perovskite and CaIrO3-type phases in the temperature range of 1300–3100 K was determined to be P (GPa)=130 (F3)+0.0070 (F0.00...

متن کامل

Transformation textures in post-perovskite: Understanding mantle flow in the D00 layer of the Earth

[1] Deformation and texture formation in (Mg, Fe)SiO3 post perovskite (ppv) is a potential explanation for the strong seismic anisotropy that is found in the D00 layer of the Earth. However, different experimental approaches have resulted in different lattice preferred orientations (LPO) in deformed ppv that have led to ambiguity in the interpretation of deformation in the lowermost mantle. Her...

متن کامل

The enigma of post-perovskite anisotropy: deformation versus transformation textures

The D00 region that lies just above the core mantle boundary exhibits complex anisotropy that this is likely due to preferred orientation (texturing) of the constituent minerals. (Mg,Fe)SiO3 post-perovskite is widely thought to be the major mineral phase of the D00. Texture development has been studied in various post-perovskite phases (MgSiO3, MgGeO3, and CaIrO3), and different results were ob...

متن کامل

In situ observation of texture development in olivine, ringwoodite, magnesiowqstite and silicate perovskite at high pressure

Magnesium silicates are the dominant minerals in the earth’s mantle. Their preferred orientation is important for understanding the rheology and seismic anisotropy in the deep earth. Here we report results of radial synchrotron diffraction diamond anvil cell (DAC) experiments on San Carlos olivine, axially compressed to 50 GPa. Experiments were performed at room temperature, except for brief la...

متن کامل

Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle

We have used a laser-heated diamond anvil cell to investigate the stability and compressibility of Cmcm CaIrO3-type (postperovskite structure) Al2O3 at pressures up to 200 GPa. A phase transformation from the Pbcn Rh2O3(II)-type to the CaIrO3-type structure was observed at 130 GPa, which is consistent with previous theoretical studies. The observed CaIrO3-type structure in Al2O3 is the same as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008